Spisu treści:
- Krok 1: Wymagany sprzęt:
- Krok 2: Podłączenie sprzętu:
- Krok 3: Kod do pomiaru temperatury:
- Krok 4: Aplikacje:
Wideo: Pomiar temperatury za pomocą STS21 i Arduino Nano: 4 kroki
2024 Autor: John Day | [email protected]. Ostatnio zmodyfikowany: 2024-01-30 11:28
Cyfrowy czujnik temperatury STS21 zapewnia doskonałą wydajność i oszczędność miejsca. Dostarcza skalibrowane, linearyzowane sygnały w formacie cyfrowym I2C. Produkcja tego czujnika oparta jest na technologii CMOSens, która zapewnia doskonałą wydajność i niezawodność STS21. Rozdzielczość STS21 można zmienić za pomocą polecenia, można wykryć niski poziom baterii, a suma kontrolna pomaga poprawić niezawodność komunikacji.
W tym samouczku zilustrowano interfejs modułu czujnika STS21 z arduino nano. Aby odczytać wartości temperatury, użyliśmy arduino z adapterem I2c. Ten adapter I2C sprawia, że połączenie z modułem czujnika jest łatwe i bardziej niezawodne.
Krok 1: Wymagany sprzęt:
Materiały, których potrzebujemy do realizacji naszego celu, obejmują następujące komponenty sprzętowe:
1. STS21
2. Arduino Nano
3. Kabel I2C
4. Osłona I2C dla arduino nano
Krok 2: Podłączenie sprzętu:
Sekcja podłączania sprzętu zasadniczo wyjaśnia połączenia okablowania wymagane między czujnikiem a arduino nano. Zapewnienie prawidłowych połączeń jest podstawową koniecznością podczas pracy na dowolnym systemie o pożądanej mocy. Tak więc wymagane połączenia są następujące:
STS21 będzie pracował przez I2C. Oto przykładowy schemat okablowania, pokazujący, jak okablować każdy interfejs czujnika.
Po wyjęciu z pudełka, płyta jest skonfigurowana do interfejsu I2C, dlatego zalecamy korzystanie z tego podłączenia, jeśli jesteś agnostykiem. Wszystko czego potrzebujesz to cztery przewody!
Wymagane są tylko cztery połączenia Vcc, Gnd, SCL i SDA, które są połączone za pomocą kabla I2C.
Połączenia te są pokazane na powyższych zdjęciach.
Krok 3: Kod do pomiaru temperatury:
Zacznijmy teraz od kodu Arduino.
Korzystając z modułu czujnika z Arduino, dołączamy bibliotekę Wire.h. Biblioteka "Wire" zawiera funkcje ułatwiające komunikację i2c pomiędzy czujnikiem a płytką Arduino.
Cały kod Arduino podano poniżej dla wygody użytkownika:
#włączać
// adres STS21 I2C to 0x4A(74)
#definiuj adres 0x4A
pusta konfiguracja()
{
// Zainicjuj komunikację I2C jako MASTER
Wire.początek();
// Rozpocznij komunikację szeregową, ustaw szybkość transmisji = 9600
Serial.początek(9600);
opóźnienie(300);
}
pusta pętla()
{
dane int bez znaku[2];
// Rozpocznij transmisję I2C
Wire.beginTransmisja(addr);
// Wybierz bez blokady master
Wire.write(0xF3);
// Zakończ transmisję I2C
Wire.endTransmission();
opóźnienie(300);
// Poproś o 2 bajty danych
Wire.requestFrom(addr, 2);
// Odczytaj 2 bajty danych
jeśli (Wire.available() == 2)
{
dane[0] = Przewód.odczyt();
dane[1] = Drut.odczyt();
}
// Konwertuj dane
int rawtmp = dane[0] * 256 + dane[1];
int wartość = rawtmp & 0xFFFC;
podwójne cTemp = -46,85 + (175,72 * (wartość / 65536.0));
podwójne fTemp = cTemp * 1,8 + 32;
// Dane wyjściowe do monitora szeregowego
Serial.print("Temperatura w stopniach Celsjusza: ");
druk.seryjny(cTemp);
Serial.println("C");
Serial.print("Temperatura w stopniach Fahrenheita: ");
Serial.print(fTemp);
Serial.println(" F");
opóźnienie(300);
}
W bibliotece przewodów Wire.write() i Wire.read() są używane do zapisywania poleceń i odczytywania wyjścia czujnika.
Serial.print() i Serial.println() służą do wyświetlania wyjścia czujnika na monitorze szeregowym Arduino IDE.
Wyjście czujnika pokazano na powyższym obrazku.
Krok 4: Aplikacje:
Cyfrowy czujnik temperatury STS21 może być stosowany w systemach wymagających bardzo dokładnego monitorowania temperatury. Może być stosowany w różnych urządzeniach komputerowych, urządzeniach medycznych i przemysłowych systemach sterowania, co wymaga pomiaru temperatury z biegłą dokładnością.
Zalecana:
Pomiar temperatury za pomocą ADT75 i Arduino Nano: 4 kroki
Pomiar temperatury za pomocą ADT75 i Arduino Nano: ADT75 to bardzo dokładny, cyfrowy czujnik temperatury. Składa się z czujnika temperatury pasma wzbronionego i 12-bitowego przetwornika analogowo-cyfrowego do monitorowania i digitalizacji temperatury. Jego bardzo czuły czujnik sprawia, że jest dla mnie wystarczająco kompetentny
Pomiar wilgotności i temperatury za pomocą HIH6130 i Arduino Nano: 4 kroki
Pomiar wilgotności i temperatury za pomocą HIH6130 i Arduino Nano: HIH6130 to czujnik wilgotności i temperatury z wyjściem cyfrowym. Czujniki te zapewniają poziom dokładności ±4% RH. Z wiodącą w branży długoterminową stabilnością, cyfrowym I2C z prawdziwą kompensacją temperatury, wiodącą w branży niezawodnością, energooszczędnością
Pomiar temperatury i wilgotności za pomocą HDC1000 i Arduino Nano: 4 kroki
Pomiar temperatury i wilgotności przy użyciu HDC1000 i Arduino Nano: HDC1000 to cyfrowy czujnik wilgotności ze zintegrowanym czujnikiem temperatury, który zapewnia doskonałą dokładność pomiaru przy bardzo małej mocy. Urządzenie mierzy wilgotność w oparciu o nowatorski czujnik pojemnościowy. Czujniki wilgotności i temperatury są prz
Pomiar temperatury za pomocą STS21 i Raspberry Pi: 4 kroki
Pomiar temperatury za pomocą STS21 i Raspberry Pi: Cyfrowy czujnik temperatury STS21 zapewnia doskonałą wydajność i zajmuje mało miejsca. Dostarcza skalibrowane, linearyzowane sygnały w formacie cyfrowym I2C. Produkcja tego czujnika oparta jest na technologii CMOSens, która zapewnia doskonałą
Pomiar temperatury za pomocą STS21 i Particle Photon: 4 kroki
Pomiar temperatury za pomocą STS21 i Particle Photon: Cyfrowy czujnik temperatury STS21 zapewnia doskonałą wydajność i zajmuje mało miejsca. Dostarcza skalibrowane, linearyzowane sygnały w formacie cyfrowym I2C. Produkcja tego czujnika oparta jest na technologii CMOSens, która zapewnia doskonałą