Spisu treści:

Pomiar ciśnienia za pomocą CPS120 i Particle Photon: 4 kroki
Pomiar ciśnienia za pomocą CPS120 i Particle Photon: 4 kroki

Wideo: Pomiar ciśnienia za pomocą CPS120 i Particle Photon: 4 kroki

Wideo: Pomiar ciśnienia za pomocą CPS120 i Particle Photon: 4 kroki
Wideo: Pomiar ciśnienia tętniczego i jego prawidłowe wartości 2024, Listopad
Anonim
Image
Image

CPS120 to wysokiej jakości i niedrogi pojemnościowy czujnik ciśnienia bezwzględnego z w pełni skompensowaną mocą wyjściową. Zużywa bardzo mniej energii i składa się z bardzo małego czujnika mikroelektromechanicznego (MEMS) do pomiaru ciśnienia. Wbudowany jest również ADC oparty na sigma-delta, aby spełnić wymóg skompensowanej mocy wyjściowej.

W tym samouczku zilustrowano interfejs modułu czujnika CPS120 z fotonem cząstek. Aby odczytać wartości ciśnienia, użyliśmy fotonu z adapterem I2c. Ten adapter I2C sprawia, że połączenie z modułem czujnika jest łatwe i bardziej niezawodne.

Krok 1: Wymagany sprzęt:

Wymagany sprzęt
Wymagany sprzęt
Wymagany sprzęt
Wymagany sprzęt
Wymagany sprzęt
Wymagany sprzęt

Materiały, których potrzebujemy do realizacji naszego celu, obejmują następujące komponenty sprzętowe:

1. CPS120

2. Cząsteczkowy foton

3. Kabel I2C

4. Tarcza I2C dla fotonu cząsteczkowego

Krok 2: Podłączenie sprzętu:

Podłączenie sprzętu
Podłączenie sprzętu
Podłączenie sprzętu
Podłączenie sprzętu

Sekcja dotycząca podłączania sprzętu zasadniczo wyjaśnia połączenia przewodów wymagane między czujnikiem a fotonem cząstek. Zapewnienie prawidłowych połączeń jest podstawową koniecznością podczas pracy na dowolnym systemie o pożądanej mocy. Tak więc wymagane połączenia są następujące:

CPS120 będzie pracował przez I2C. Oto przykładowy schemat okablowania, pokazujący, jak okablować każdy interfejs czujnika.

Po wyjęciu z pudełka, płyta jest skonfigurowana do interfejsu I2C, dlatego zalecamy korzystanie z tego podłączenia, jeśli jesteś agnostykiem. Wszystko czego potrzebujesz to cztery przewody!

Wymagane są tylko cztery połączenia Vcc, Gnd, SCL i SDA, które są połączone za pomocą kabla I2C.

Połączenia te są pokazane na powyższych zdjęciach.

Krok 3: Kod do pomiaru ciśnienia:

Kod do pomiaru ciśnienia
Kod do pomiaru ciśnienia

Zacznijmy teraz od kodu cząstek.

Podczas korzystania z modułu czujnika z Arduino dołączamy bibliotekę application.h oraz spark_wiring_i2c.h. Biblioteka "application.h" oraz spark_wiring_i2c.h zawiera funkcje ułatwiające komunikację i2c pomiędzy czujnikiem a cząsteczką.

Cały kod cząstek podano poniżej dla wygody użytkownika:

#włączać

#włączać

// adres CPS120 I2C to 0x28(40)

#define Addr 0x28

podwójna temperatura = 0,0, ciśnienie = 0,0;

pusta konfiguracja()

{

// Ustaw zmienną

Particle.variable("i2cdevice", "CPS120");

Particle.variable("ciśnienie", ciśnienie);

Particle.variable("temperatura", temperatura);

// Zainicjuj komunikację I2C jako MASTER

Wire.początek();

// Zainicjuj komunikację szeregową, ustaw szybkość transmisji = 9600

Serial.początek(9600);

}

pusta pętla()

{

dane int bez znaku[4];

// Rozpocznij transmisję I2C

Wire.beginTransmisja(Addr);

opóźnienie(10);

// Zatrzymaj transmisję I2C

Wire.endTransmission();

// Żądaj 4 bajtów danych

Wire.requestFrom(Addr, 4);

// Odczytaj 4 bajty danych

// ciśnienie msb, ciśnienie lsb, temp msb, temp lsb

if(Przewód.dostępny() == 4)

{

dane[0] = Przewód.odczyt();

dane[1] = Drut.odczyt();

dane[2] = Przewód.odczyt();

dane[3] = Przewód.odczyt();

}

// Konwertuj wartości

ciśnienie = ((((dane[0] & 0x3F) * 265 + dane[1]) / 16384,0) * 90,0) + 30,0;

cTemp = ((((dane[2] * 256) + (dane[3] & 0xFC)) / 4,0) * (165,0 / 16384,0)) - 40,0;

fTemp = cTemp * 1,8 + 32;

// Dane wyjściowe do pulpitu nawigacyjnego

Particle.publish("Ciśnienie wynosi: ", String(ciśnienie));

opóźnienie (1000);

Particle.publish("Temperatura w stopniach Celsjusza: ", String(cTemp));

opóźnienie (1000);

Particle.publish("Temperatura w stopniach Fahrenheita: ", String(fTemp));

opóźnienie (1000);

}

Funkcja Particle.variable() tworzy zmienne do przechowywania danych wyjściowych czujnika, a funkcja Particle.publish() wyświetla dane wyjściowe na pulpicie nawigacyjnym witryny.

Wyjście czujnika pokazano na powyższym obrazku w celach informacyjnych.

Krok 4: Aplikacje:

Aplikacje
Aplikacje

CPS120 ma wiele zastosowań. Może być stosowany w przenośnych i stacjonarnych barometrach, wysokościomierzach itp. Ciśnienie jest ważnym parametrem określającym warunki pogodowe i biorąc pod uwagę, że czujnik ten może być instalowany również na stacjach pogodowych. Może być wbudowany w systemy kontroli powietrza, jak również systemy próżniowe.

Zalecana: